Τετάρτη 3 Σεπτεμβρίου 2014

MOBY LOCI PROBLEMS and REWARD (PRIZE)

Let ABC be a triangle, P a point and PaPbPc the pedal triangle of P.

Denote:

Pab, Pac = the orthogonal projections of Pa on OB,OC, resp.

(N1) = the NPC of PaPabPac. Similarly (N2),(N3)

Ra = the radical axis of (N2),(N3. Similarly Rb, Rc.

Sa = the parallel to Ra through A. Similarly Sb, Sc

1. Which is the locus of P such that Sa,Sb,Sc are concurrent? The Euler Line + + ??

2. Let P be a point on the Euler Line.

2.1. Which is the locus of the radical center P' of (N1),(N2),(N3) [point of concurrence of Ra,Rb,Rc] as P moves on the Euler line?

2.2. Which is the locus of the point of concurrence P" of Sa,Sb,Sc (if concur) as P moves on the Euler line?

If the loci are new I name them 1st MOBY Locus and 2nd MOBY Locus and the points P',P" as P'-Moby Point and P"-Moby point.

REWARD:

For a complete solution I offer the rare book of J. Neuberg, Sur les projections et contre-projections d' un triangle fixe, Bruxelles 1890.

Antreas P. Hatzipolakis, 4 September 2014

************************************

1: Euler line and this conic:

2 a^2 (a^2 - b^2 - c^2) (a^6 b^2 - 3 a^4 b^4 + 3 a^2 b^6 - b^8 + a^6 c^2 + 2 a^2 b^4 c^2 - 3 b^6 c^2 - 3 a^4 c^4 + 2 a^2 b^2 c^4 + 8 b^4 c^4 + 3 a^2 c^6 - 3 b^2 c^6 - c^8) x^2 + (3 a^12 - 11 a^10 b^2 + 15 a^8 b^4 - 10 a^6 b^6 + 5 a^4 b^8 - 3 a^2 b^10 + b^12 - 11 a^10 c^2 + 21 a^8 b^2 c^2 + 6 a^6 b^4 c^2 - 33 a^4 b^6 c^2 + 19 a^2 b^8 c^2 - 2 b^10 c^2 + 15 a^8 c^4 + 6 a^6 b^2 c^4 + 56 a^4 b^4 c^4 - 16 a^2 b^6 c^4 - b^8 c^4 - 10 a^6 c^6 - 33 a^4 b^2 c^6 - 16 a^2 b^4 c^6 + 4 b^6 c^6 + 5 a^4 c^8 + 19 a^2 b^2 c^8 - b^4 c^8 - 3 a^2 c^10 - 2 b^2 c^10 + c^12) y z + cyclic

2.1: A nasty cubic.

2.2: circumconic thru X(3519)

(b^2-c^2) (a^2-b^2-c^2) (a^8-3 a^6 b^2+4 a^4 b^4-3 a^2 b^6+b^8-3 a^6 c^2-11 a^4 b^2 c^2+3 a^2 b^4 c^2-4 b^6 c^2+4 a^4 c^4+3 a^2 b^2 c^4+6 b^4 c^4-3 a^2 c^6-4 b^2 c^6+c^8) y z + cyclic

Peter Moses 4 September 2014

Suppose we parameterize a point on the Euler lines as a^2 SA + k SB SC::, then the concurrence is

1 / (a^2 SA (S^2 + 5 SA^2) + k (3 S^2 - SA^2) SB SC)::

Thus:

1): L, k = -1

concurrence = 1/(a^2 SA (S^2+5 SA^2)-(3 S^2-SA^2) SB SC)::

2): O, k = 0

concurrence = 1/(a^2 SA (S^2+5 SA^2)):: on lines {{4,3521},{93,403},...}

3): G, k = 1

concurrence = 1/(a^2 SA (S^2+5 SA^2)+(3 S^2-SA^2) SB SC)::

4): N, k = 2

concurrence = 1/(a^2 SA (S^2+5 SA^2)+2 (3 S^2-SA^2) SB SC)::

5): H, k = Infinity

concurrence = 1/((3 S^2-SA^2) SB SC):: = X(3519).

6): Schiffler, k = R/(r+R)

concurrence = 1/(a^2 (r+R) SA (S^2+5 SA^2)+R (3 S^2-SA^2) SB SC)::

Peter Moses 5 September 2014

ADDENDUM:

1. = X(34223)
2. = X(15424)

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Another relationship between Napoleon cubic and Neuberg cubic

Another relationship between Napoleon cubic K005 and Neuberg cubic K001 The world of Triangle Geometry is very intrincate. There are many...