X(68423) = X(3)X(26913)∩X(30)X(5892)
Barycentrics 2*a^10 - 4*a^8*b^2 + a^6*b^4 + a^4*b^6 + a^2*b^8 - b^10 - 4*a^8*c^2 - 2*a^6*b^2*c^2 + 8*a^4*b^4*c^2 - 5*a^2*b^6*c^2 + 3*b^8*c^2 + a^6*c^4 + 8*a^4*b^2*c^4 + 8*a^2*b^4*c^4 - 2*b^6*c^4 + a^4*c^6 - 5*a^2*b^2*c^6 - 2*b^4*c^6 + a^2*c^8 + 3*b^2*c^8 - c^10 : :X(68423) = X[20] + 2 X[15807], 3 X[13364] - 2 X[66531], 2 X[140] + X[13470], X[140] - 4 X[44862], X[13470] + 8 X[44862], X[143] - 4 X[64038], X[568] + 3 X[67338], 5 X[632] + X[11750], 2 X[1216] + X[11264], 11 X[3525] + X[65149], 2 X[3628] + X[44829], X[3853] + 2 X[17712], 11 X[5070] + X[64718], 2 X[5447] + X[45970], X[6146] + 2 X[32142], X[7553] - 4 X[18874], 4 X[11017] - X[16655], 2 X[11591] + X[45732], 4 X[11592] - X[68018], X[11819] - 4 X[32205], 2 X[12241] + X[63414], X[12278] - 13 X[61811], X[12289] + 11 X[15720], 2 X[12362] + X[13630], X[12897] + 2 X[44245], X[13403] + 2 X[33923], X[13419] - 4 X[35018], X[15644] + 2 X[43575], 5 X[15712] + X[21659], 4 X[16239] - X[45286], 2 X[18128] + X[31834], X[18564] + 3 X[20791], X[34798] - 7 X[66606], 13 X[46219] - X[64032], 7 X[55856] - X[61139], 5 X[61940] - 2 X[67322]
See Antreas Hatzipolakis and Peter Moses, euclid 8425.
X(68423) lies on these lines: {2, 34513}, {3, 26913}, {5, 22352}, {20, 15807}, {30, 5892}, {140, 13470}, {143, 64038}, {265, 15246}, {389, 44056}, {539, 44324}, {547, 44407}, {549, 30522}, {550, 61744}, {568, 67338}, {632, 11750}, {1154, 11245}, {1216, 11264}, {1853, 7514}, {1899, 33533}, {3153, 13339}, {3525, 65149}, {3628, 44829}, {3819, 32423}, {3853, 17712}, {5012, 51391}, {5066, 29012}, {5070, 64718}, {5092, 46029}, {5447, 45970}, {5944, 59648}, {6146, 32142}, {6643, 32046}, {6676, 20304}, {7502, 61645}, {7553, 18874}, {8703, 32225}, {10610, 37452}, {10691, 54044}, {10984, 67869}, {11017, 16655}, {11585, 58407}, {11591, 45732}, {11592, 68018}, {11801, 55674}, {11819, 32205}, {12022, 54042}, {12100, 17702}, {12241, 63414}, {12278, 61811}, {12289, 15720}, {12362, 13630}, {12897, 44245}, {13154, 64037}, {13353, 61715}, {13391, 67336}, {13403, 33923}, {13419, 35018}, {14805, 31101}, {15311, 52073}, {15644, 43575}, {15712, 21659}, {16239, 45286}, {16252, 23060}, {18128, 31834}, {18377, 37515}, {18564, 20791}, {25739, 54006}, {34798, 66606}, {34826, 37126}, {35268, 44270}, {36201, 61574}, {37513, 37938}, {37649, 47341}, {43650, 44288}, {43821, 67321}, {44882, 46030}, {46219, 64032}, {48889, 50134}, {51392, 61659}, {55856, 61139}, {61134, 67861}, {61940, 67322}
X(68423) = midpoint of X(i) and X(j) for these {i,j}: {550, 61744}, {12022, 54042}
X(68423) = reflection of X(54044) in X(10691)
X(68424) = X(3)X(26913)∩X(4)X(567)
Barycentrics 2*a^10 - 4*a^8*b^2 + a^6*b^4 + a^4*b^6 + a^2*b^8 - b^10 - 4*a^8*c^2 + 6*a^6*b^2*c^2 - 5*a^2*b^6*c^2 + 3*b^8*c^2 + a^6*c^4 + 8*a^2*b^4*c^4 - 2*b^6*c^4 + a^4*c^6 - 5*a^2*b^2*c^6 - 2*b^4*c^6 + a^2*c^8 + 3*b^2*c^8 - c^10 : :X(68424) = 3 X[4] + X[65149], 6 X[15807] + X[65149], X[12897] - 3 X[13403], 2 X[12897] + 3 X[13470], 2 X[13403] + X[13470], 3 X[13403] + X[44829], 3 X[13470] - 2 X[44829], 3 X[381] + X[12289], 5 X[1656] - X[12278], X[1885] + 2 X[11565], X[3627] - 3 X[61744], X[11750] + 3 X[61744], 3 X[3830] + X[64718], 5 X[3843] - X[64032], 3 X[3845] - X[61139], X[45732] + 2 X[52070], X[5876] - 3 X[52069], X[44076] + 3 X[52069], X[5889] + 3 X[18564], 3 X[5890] + X[18562], 3 X[5890] - X[34798], 3 X[5946] - X[6240], X[6101] - 3 X[67337], X[6102] - 3 X[12022], 3 X[12022] + X[18563], 5 X[10574] - X[18565], X[11819] - 3 X[16657], 3 X[16657] - 2 X[67867], 3 X[12100] - 4 X[44862], 3 X[13363] - 2 X[31833], 3 X[13364] - 2 X[31830], 3 X[13451] - 4 X[40240], 2 X[14128] - 3 X[34664], X[14516] - 3 X[15060], 3 X[14893] - 2 X[67322], 5 X[15026] - 3 X[38321], 7 X[15043] + X[40242], 3 X[18435] + X[34799], 4 X[18874] - 3 X[67237], X[34783] + 3 X[67339], X[34797] - 5 X[37481]
See Antreas Hatzipolakis and Peter Moses, euclid 8425.
X(68424) lies on these lines: {3, 26913}, {4, 567}, {5, 13367}, {6, 52843}, {20, 18952}, {30, 143}, {54, 18403}, {113, 10619}, {140, 6723}, {156, 19467}, {184, 67869}, {186, 43821}, {265, 14118}, {381, 9707}, {403, 5944}, {539, 31834}, {546, 8254}, {550, 18555}, {569, 44263}, {578, 18377}, {1154, 12370}, {1199, 10296}, {1493, 66727}, {1503, 32137}, {1656, 12278}, {1658, 18390}, {1885, 11565}, {1899, 32138}, {2070, 43835}, {2072, 43394}, {2777, 18128}, {3153, 37472}, {3521, 64890}, {3575, 10095}, {3627, 11750}, {3830, 64718}, {3843, 64032}, {3845, 61139}, {3850, 45286}, {3853, 44407}, {3861, 13419}, {5133, 22804}, {5462, 45971}, {5663, 6146}, {5876, 44076}, {5889, 18564}, {5890, 18562}, {5907, 32423}, {5946, 6240}, {6101, 67337}, {6102, 12022}, {6288, 35500}, {7514, 12293}, {7526, 18396}, {7564, 18405}, {7687, 44516}, {7706, 50006}, {7728, 67879}, {8718, 18325}, {10019, 12140}, {10024, 10113}, {10212, 40685}, {10224, 11430}, {10263, 12225}, {10282, 44235}, {10540, 12254}, {10574, 18565}, {10627, 12362}, {10733, 61134}, {11264, 13754}, {11424, 44288}, {11572, 33332}, {11591, 44665}, {11819, 16657}, {12038, 49673}, {12041, 35491}, {12100, 44862}, {12106, 34785}, {12134, 45958}, {12162, 45731}, {12295, 64179}, {12429, 64105}, {12902, 34864}, {13142, 13421}, {13353, 34007}, {13363, 31833}, {13364, 31830}, {13406, 18475}, {13451, 40240}, {13491, 18560}, {13561, 18570}, {13567, 44242}, {13619, 43816}, {13861, 17845}, {14128, 34664}, {14130, 25739}, {14516, 15060}, {14644, 51033}, {14893, 67322}, {15026, 38321}, {15033, 31724}, {15043, 40242}, {15516, 29012}, {15646, 43817}, {17712, 62144}, {18364, 38724}, {18378, 41482}, {18383, 39504}, {18388, 18567}, {18435, 34799}, {18445, 66733}, {18474, 63682}, {18874, 67237}, {18912, 66721}, {18945, 32140}, {31726, 52525}, {31861, 64037}, {32142, 68018}, {32210, 67902}, {34148, 51391}, {34782, 46030}, {34783, 67339}, {34797, 37481}, {35480, 36753}, {35603, 44438}, {36966, 43844}, {37490, 66711}, {44279, 64049}, {46031, 64063}, {52008, 67067}, {61574, 61608}
X(68424) = midpoint of X(i) and X(j) for these {i,j}: {5, 21659}, {3627, 11750}, {5876, 44076}, {6102, 18563}, {6146, 52070}, {10263, 12225}, {12162, 45731}, {12370, 12605}, {12897, 44829}, {13491, 18560}, {18562, 34798}
X(68424) = reflection of X(i) in X(j) for these {i,j}: {4, 15807}, {143, 12241}, {389, 43575}, {3575, 10095}, {10627, 12362}, {11264, 45970}, {11591, 52073}, {11819, 67867}, {12134, 45958}, {13419, 3861}, {13421, 13142}, {45286, 3850}, {45732, 6146}, {45971, 5462}, {62144, 17712}, {68018, 32142}
X(68424) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {5, 13367, 58435}, {54, 18403, 67861}, {265, 14118, 34826}, {3153, 43818, 37472}, {5890, 18562, 34798}, {5944, 43865, 403}, {10113, 10610, 10024}, {11750, 61744, 3627}, {11819, 16657, 67867}, {12022, 18563, 6102}, {13403, 44829, 12897}, {18570, 67903, 13561}, {18945, 49669, 32140}, {44076, 52069, 5876}
X(68425) = X(3)X(26913)∩X(5)X(1495)
Barycentrics 2*a^10 - 4*a^8*b^2 + a^6*b^4 + a^4*b^6 + a^2*b^8 - b^10 - 4*a^8*c^2 + 2*a^6*b^2*c^2 + 4*a^4*b^4*c^2 - 5*a^2*b^6*c^2 + 3*b^8*c^2 + a^6*c^4 + 4*a^4*b^2*c^4 + 8*a^2*b^4*c^4 - 2*b^6*c^4 + a^4*c^6 - 5*a^2*b^2*c^6 - 2*b^4*c^6 + a^2*c^8 + 3*b^2*c^8 - c^10 : :X(68425) = 3 X[5] + X[11750], 5 X[5] - X[61139], X[11750] - 3 X[13470], 5 X[11750] + 3 X[61139], 5 X[13470] + X[61139], 5 X[15807] + 4 X[17712], 3 X[547] - X[45286], 3 X[549] + X[21659], 3 X[12362] + X[13292], 7 X[3090] + X[65149], 7 X[3526] + X[12289], X[3575] - 3 X[13363], 7 X[3851] + X[64718], 9 X[5054] - X[12278], 9 X[5055] - X[64032], 3 X[5066] - X[13419], 3 X[5891] + X[45731], 3 X[5892] - X[45971], 3 X[5946] + X[12225], X[6101] + 3 X[12022], X[6102] + 3 X[67337], 5 X[10574] + 3 X[18564], 5 X[10574] - X[34798], 3 X[18564] + X[34798], X[11819] - 3 X[13364], 4 X[12046] - 3 X[23410], X[13491] + 3 X[52069], 3 X[15060] + X[34224], 3 X[15067] + X[44076], X[15704] + 3 X[61744], X[18562] + 7 X[66606], X[18565] - 9 X[20791], 3 X[34664] - X[45959], X[34797] - 9 X[40280], X[37484] - 9 X[67338], X[63414] - 3 X[67336]
See Antreas Hatzipolakis and Peter Moses, euclid 8425.
X(68425) lies on these lines: {3, 26913}, {4, 37471}, {5, 1495}, {30, 5462}, {54, 51391}, {68, 33533}, {140, 30522}, {182, 18377}, {265, 37126}, {511, 43575}, {542, 45734}, {546, 44829}, {547, 45286}, {548, 13403}, {549, 21659}, {1154, 12362}, {1216, 45970}, {1503, 45958}, {2072, 10610}, {3090, 65149}, {3153, 13353}, {3292, 36966}, {3526, 12289}, {3530, 17702}, {3575, 13363}, {3581, 43816}, {3628, 18400}, {3850, 44407}, {3851, 64718}, {3856, 67322}, {3861, 29012}, {5012, 67861}, {5054, 12278}, {5055, 64032}, {5066, 13419}, {5562, 11264}, {5663, 52073}, {5876, 45732}, {5891, 45731}, {5892, 45971}, {5946, 12225}, {6101, 12022}, {6102, 67337}, {6146, 11591}, {6288, 7550}, {6756, 18874}, {7505, 34513}, {7512, 43821}, {7514, 67878}, {7516, 18396}, {7525, 18390}, {7542, 20304}, {7574, 13434}, {10116, 31834}, {10282, 50140}, {10574, 18564}, {10619, 40111}, {10627, 12370}, {11565, 14128}, {11645, 46852}, {11793, 32423}, {11801, 34004}, {11819, 13364}, {12041, 34005}, {12046, 23410}, {12103, 12897}, {12241, 13391}, {12605, 13630}, {13336, 44263}, {13339, 34007}, {13491, 52069}, {14788, 22804}, {15060, 34224}, {15067, 44076}, {15361, 43836}, {15704, 61744}, {15800, 34545}, {16266, 18536}, {18381, 49671}, {18403, 61134}, {18475, 49673}, {18531, 32046}, {18562, 66606}, {18565, 20791}, {19155, 48906}, {22352, 61750}, {25739, 34864}, {31724, 43651}, {31830, 32205}, {32142, 44665}, {32348, 36253}, {34664, 45959}, {34797, 40280}, {34826, 35921}, {37452, 43394}, {37477, 43818}, {37484, 67338}, {37514, 52843}, {63414, 67336}, {64049, 67869}
X(68425) = midpoint of X(i) and X(j) for these {i,j}: {5, 13470}, {546, 44829}, {548, 13403}, {1216, 45970}, {5562, 11264}, {5876, 45732}, {6146, 11591}, {10116, 31834}, {10627, 12370}, {11565, 14128}, {12103, 12897}, {12605, 13630}
X(68425) = reflection of X(i) in X(j) for these {i,j}: {3530, 44862}, {6756, 18874}, {12006, 64038}, {31830, 32205}, {67322, 3856}
X(68425) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {2072, 10610, 58407}, {10574, 18564, 34798}, {18475, 49673, 58435}
X(68426) = X(3)X(26913)∩X(343)X(550)
Barycentrics 2*a^10 - 4*a^8*b^2 + a^6*b^4 + a^4*b^6 + a^2*b^8 - b^10 - 4*a^8*c^2 + 14*a^6*b^2*c^2 - 8*a^4*b^4*c^2 - 5*a^2*b^6*c^2 + 3*b^8*c^2 + a^6*c^4 - 8*a^4*b^2*c^4 + 8*a^2*b^4*c^4 - 2*b^6*c^4 + a^4*c^6 - 5*a^2*b^2*c^6 - 2*b^4*c^6 + a^2*c^8 + 3*b^2*c^8 - c^10 : :X(68426) = 5 X[13419] - 7 X[45286], 3 X[550] - X[11750], 5 X[632] - 3 X[61744], 3 X[2979] + X[18565], 3 X[3534] + X[12278], X[6101] - 3 X[54040], 5 X[6102] - 3 X[41628], 3 X[8703] - X[21659], 2 X[10095] - 3 X[66614], X[10263] - 3 X[38323], X[12289] - 5 X[15696], 2 X[12362] - 3 X[54044], 2 X[13292] - 3 X[13630], X[13292] - 3 X[31829], 3 X[13340] + X[34797], X[13491] - 3 X[44458], 3 X[14855] - X[45731], 3 X[15067] - X[18560], 3 X[15681] + X[64032], 3 X[15690] - 2 X[17712], 3 X[16657] - 4 X[32205], 3 X[16836] - 2 X[43575], 5 X[17538] - X[65149], X[18563] - 3 X[54042], 4 X[44862] - 5 X[61790], 5 X[62131] - X[64718]
See Antreas Hatzipolakis and Peter Moses, euclid 8425.
X(68426) lies on these lines: {2, 15807}, {3, 26913}, {5, 10564}, {20, 41466}, {30, 1216}, {323, 3521}, {343, 550}, {382, 15066}, {546, 53415}, {548, 13470}, {632, 61744}, {1092, 67869}, {1885, 14128}, {2071, 34826}, {2777, 31834}, {2979, 18565}, {3530, 13403}, {3534, 12278}, {3628, 12897}, {3631, 29012}, {5663, 68018}, {5876, 52071}, {6101, 54040}, {6102, 41628}, {6288, 7464}, {7512, 12121}, {8703, 21659}, {10095, 66614}, {10113, 37452}, {10263, 38323}, {11264, 40647}, {11412, 34798}, {12084, 67878}, {12103, 18400}, {12289, 15696}, {12362, 54044}, {12605, 13416}, {13292, 13630}, {13339, 43818}, {13340, 34797}, {13491, 44458}, {13565, 44236}, {14855, 45731}, {15067, 18560}, {15681, 64032}, {15690, 17712}, {15704, 61299}, {15760, 58407}, {16196, 20304}, {16657, 32205}, {16836, 43575}, {17538, 65149}, {17845, 33532}, {18325, 43598}, {18350, 51548}, {18377, 37480}, {18563, 54042}, {18952, 61113}, {24981, 44866}, {31833, 68084}, {32142, 52070}, {32171, 63631}, {32423, 46850}, {34005, 62302}, {34007, 37477}, {37636, 64180}, {38448, 38723}, {41724, 43807}, {43574, 67861}, {44241, 63734}, {44245, 44829}, {44407, 62144}, {44440, 61753}, {44665, 45732}, {44862, 61790}, {51394, 58435}, {55631, 61543}, {61139, 62155}, {62038, 67322}, {62131, 64718}, {63441, 67926}
X(68426) = midpoint of X(i) and X(j) for these {i,j}: {5876, 52071}, {11412, 34798}, {61139, 62155}
X(68426) = reflection of X(i) in X(j) for these {i,j}: {1885, 14128}, {11264, 40647}, {12897, 3628}, {13403, 3530}, {13470, 548}, {13630, 31829}, {32137, 64035}, {44829, 44245}, {52070, 32142}, {62038, 67322}, {68084, 31833}
X(68426) = anticomplement of X(15807)
X(68426) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {343, 550, 32210}, {51394, 61750, 58435}
X(68427) = X(3)X(26913)∩X(5)X(156)
Barycentrics a^10 - 2*a^8*b^2 + a^6*b^4 - a^4*b^6 + 2*a^2*b^8 - b^10 - 2*a^8*c^2 + 2*a^6*b^2*c^2 + 2*a^4*b^4*c^2 - 5*a^2*b^6*c^2 + 3*b^8*c^2 + a^6*c^4 + 2*a^4*b^2*c^4 + 6*a^2*b^4*c^4 - 2*b^6*c^4 - a^4*c^6 - 5*a^2*b^2*c^6 - 2*b^4*c^6 + 2*a^2*c^8 + 3*b^2*c^8 - c^10 : :X(68427) = X[6515] + 3 X[18531], X[15068] - 3 X[16072], X[31383] - 3 X[44275]
See Antreas Hatzipolakis and Peter Moses, euclid 8425.
X(68427) lies on these lines: {2, 265}, {3, 26913}, {4, 3521}, {5, 156}, {26, 13470}, {30, 11438}, {51, 44288}, {54, 10255}, {68, 11591}, {125, 18570}, {140, 9927}, {143, 18569}, {155, 11264}, {182, 11801}, {343, 33533}, {381, 5422}, {389, 18377}, {403, 61752}, {546, 2883}, {567, 7577}, {568, 3153}, {578, 10224}, {597, 3818}, {1147, 45970}, {1154, 6515}, {1181, 67869}, {1495, 44270}, {1503, 46030}, {1514, 3845}, {1568, 61713}, {1593, 15807}, {1656, 58407}, {1853, 31861}, {1899, 5663}, {1993, 51391}, {2072, 12022}, {3060, 7574}, {3090, 6288}, {3448, 18435}, {3518, 65149}, {3534, 15361}, {3542, 11565}, {3567, 31724}, {3580, 67337}, {5012, 10254}, {5055, 41171}, {5462, 18383}, {5876, 25738}, {5890, 18403}, {5907, 18356}, {5944, 7505}, {6102, 18404}, {6143, 45622}, {6639, 10610}, {6640, 43394}, {6643, 10627}, {6644, 18396}, {6759, 44235}, {6776, 19155}, {6816, 14128}, {7386, 54044}, {7502, 63735}, {7503, 34826}, {7507, 35603}, {7514, 14852}, {7526, 13561}, {7528, 18874}, {7530, 61299}, {7544, 22804}, {7547, 36753}, {7575, 61645}, {7592, 67861}, {7706, 18376}, {7728, 67925}, {8703, 44569}, {9306, 32423}, {9544, 14643}, {9730, 13851}, {9786, 52843}, {9818, 61702}, {10113, 12099}, {10192, 68319}, {10193, 20397}, {10263, 37444}, {10297, 11245}, {10540, 62947}, {10575, 44271}, {10938, 11561}, {10984, 61750}, {11202, 44234}, {11204, 61548}, {11250, 13403}, {11425, 31283}, {11430, 61736}, {11442, 15060}, {11487, 15077}, {11572, 63672}, {11585, 12370}, {11750, 37440}, {11818, 13364}, {12006, 18379}, {12041, 35481}, {12106, 18400}, {12121, 61128}, {12241, 13371}, {12278, 43809}, {12289, 45735}, {12359, 52073}, {12362, 63734}, {12900, 61681}, {13352, 37938}, {13363, 18420}, {13367, 60780}, {13391, 14791}, {13406, 64049}, {13421, 64048}, {13621, 64032}, {13861, 64037}, {14130, 23294}, {14216, 32137}, {14516, 50143}, {14708, 67921}, {14790, 68084}, {14864, 46849}, {14915, 58483}, {15043, 18394}, {15045, 18392}, {15053, 43836}, {15061, 35473}, {15068, 16072}, {15072, 31726}, {15133, 50008}, {16227, 44283}, {17714, 44829}, {18128, 61749}, {18324, 26958}, {18350, 34799}, {18378, 64718}, {18388, 43573}, {18559, 58789}, {18563, 26879}, {18565, 43601}, {18580, 20396}, {18583, 41729}, {19357, 58435}, {19467, 32171}, {20379, 23291}, {21243, 36253}, {21659, 37814}, {22352, 44262}, {22466, 34350}, {22660, 43588}, {23293, 38724}, {23325, 39504}, {23332, 44236}, {26937, 32210}, {31101, 37477}, {31181, 44413}, {31383, 44275}, {31830, 41362}, {32138, 52070}, {32139, 45732}, {32140, 45959}, {34477, 47296}, {34513, 68085}, {34545, 62982}, {34609, 64099}, {34664, 67926}, {34782, 44232}, {34783, 43808}, {34786, 45971}, {35493, 38728}, {39503, 57136}, {40647, 44279}, {44076, 61753}, {44665, 53415}, {44961, 51733}, {46031, 61747}, {48906, 62375}, {51548, 62974}
X(68427) = midpoint of X(6644) and X(18396)
X(68427) = reflection of X(9306) in X(50140)
X(68427) = X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {3, 61701, 63839}, {4, 18952, 13630}, {4, 43816, 37481}, {5, 6146, 156}, {5, 31804, 61608}, {5, 45731, 10539}, {381, 25739, 34514}, {5012, 14644, 10254}, {9730, 13851, 44263}, {10224, 43575, 578}, {13491, 43865, 4}, {18404, 18912, 6102}, {18569, 39571, 143}, {21659, 43817, 37814}, {45970, 49673, 1147}, {52070, 67902, 32138}
X(68428) = X(3)X(26913)∩X(30)X(11695)
Barycentrics 2*a^10 - 4*a^8*b^2 + a^6*b^4 + a^4*b^6 + a^2*b^8 - b^10 - 4*a^8*c^2 - 6*a^6*b^2*c^2 + 12*a^4*b^4*c^2 - 5*a^2*b^6*c^2 + 3*b^8*c^2 + a^6*c^4 + 12*a^4*b^2*c^4 + 8*a^2*b^4*c^4 - 2*b^6*c^4 + a^4*c^6 - 5*a^2*b^2*c^6 - 2*b^4*c^6 + a^2*c^8 + 3*b^2*c^8 - c^10 : :X(68428) = 3 X[140] + X[44829], 5 X[140] - X[45286], 5 X[44829] + 3 X[45286], X[143] + 3 X[67336], 3 X[548] + X[12897], 3 X[549] + X[13470], 15 X[631] + X[65149], 3 X[3917] + X[11264], X[5446] + 3 X[60749], 5 X[6101] + 3 X[41628], 3 X[7667] + X[68084], 3 X[10109] - X[67322], X[10116] + 3 X[44324], 9 X[11539] - X[61139], X[11750] + 7 X[14869], X[11819] - 9 X[64730], X[12278] - 17 X[61803], X[12289] + 15 X[15693], X[12370] + 3 X[54044], X[13403] + 3 X[34200], X[13419] - 5 X[48154], 3 X[15067] + X[45732], 15 X[15694] + X[64718], 9 X[20791] - X[34798], X[21659] + 7 X[44682], 17 X[55863] - X[64032], 3 X[61744] + 5 X[62104]
See Antreas Hatzipolakis and Peter Moses, euclid 8425.
X(68428) lies on these lines: {3, 26913}, {30, 11695}, {140, 44829}, {143, 67336}, {265, 45308}, {548, 12897}, {549, 13470}, {550, 15807}, {631, 65149}, {3530, 30522}, {3628, 61299}, {3850, 17712}, {3917, 11264}, {5092, 10224}, {5446, 60749}, {6101, 41628}, {7667, 68084}, {10109, 67322}, {10116, 44324}, {11539, 61139}, {11592, 44665}, {11750, 14869}, {11819, 64730}, {12108, 18400}, {12278,3 X[140] + X[44829], 5 X[140] - X[45286], 5 X[44829] + 3 X[45286], X[143] + 3 X[67336], 3 X[548] + X[12897], 3 X[549] + X[13470], 15 X[631] + X[65149], 3 X[3917] + X[11264], X[5446] + 3 X[60749], 5 X[6101] + 3 X[41628], 3 X[7667] + X[68084], 3 X[10109] - X[67322], X[10116] + 3 X[44324], 9 X[11539] - X[61139], X[11750] + 7 X[14869], X[11819] - 9 X[64730], X[12278] - 17 X[61803], X[12289] + 15 X[15693], X[12370] + 3 X[54044], X[13403] + 3 X[34200], X[13419] - 5 X[48154], 3 X[15067] + X[45732], 15 X[15694] + X[64718], 9 X[20791] - X[34798], X[21659] + 7 X[44682], 17 X[55863] - X[64032], 3 X[61744] + 5 X[62104] 61803}, {12289, 15693}, {12370, 54044}, {13347, 18377}, {13348, 43575}, {13391, 64038}, {13403, 34200}, {13419, 48154}, {15067, 45732}, {15606, 32165}, {15694, 64718}, {16239, 44407}, {17702, 61792}, {20304, 34002}, {20791, 34798}, {21659, 44682}, {23060, 51425}, {29012, 35018}, {32046, 37645}, {37452, 58407}, {43821, 44832}, {51391, 61134}, {55863, 64032}, {61744, 62104}
X(68428) = midpoint of X(i) and X(j) for these {i,j}: {550, 15807}, {3850, 17712}, {13348, 43575}, {15606, 32165}
X(68429) = X(3)X(26913)∩X(30)X(6699)
Barycentrics 2*a^10 - 4*a^8*b^2 - a^6*b^4 + 7*a^4*b^6 - 5*a^2*b^8 + b^10 - 4*a^8*c^2 + 10*a^6*b^2*c^2 - 8*a^4*b^4*c^2 + 5*a^2*b^6*c^2 - 3*b^8*c^2 - a^6*c^4 - 8*a^4*b^2*c^4 + 2*b^6*c^4 + 7*a^4*c^6 + 5*a^2*b^2*c^6 + 2*b^4*c^6 - 5*a^2*c^8 - 3*b^2*c^8 + c^10 : :X(68428) = 3 X[3] + X[50435], X[50435] - 3 X[63839], 5 X[6699] + X[32223], X[32223] - 5 X[44673], X[186] + 3 X[15061], X[265] + 3 X[37941], 3 X[549] - X[51394], 5 X[631] - X[22115], X[1495] - 3 X[16532], X[2071] - 5 X[38728], X[2072] - 3 X[34128], X[3292] - 7 X[14869], X[3581] + 3 X[65085], 9 X[5054] - X[50461], X[5609] - 3 X[59648], 3 X[44452] - X[51425], X[7575] + 5 X[38729], 13 X[10303] - X[63720], X[11563] - 3 X[61691], X[14157] + 7 X[15057], 3 X[15055] + X[31726], 5 X[15059] - X[18403], 11 X[15720] + X[41724], X[18571] + 2 X[20397], 2 X[20396] + X[47335], X[25739] + 3 X[37955], X[34152] - 3 X[38727], 3 X[38727] + X[63735], 3 X[35489] + X[58789], 3 X[37943] - X[51548], 3 X[38793] - X[40111], 3 X[44282] - X[51403], 3 X[46451] + X[64624]
See Antreas Hatzipolakis and Peter Moses, euclid 8425.
X(68429) lies on these lines: {3, 26913}, {5, 21663}, {30, 6699}, {125, 15646}, {140, 9729}, {143, 23336}, {156, 26937}, {185, 58435}, {186, 15061}, {265, 37941}, {343, 549}, {389, 5498}, {403, 12041}, {539, 48378}, {546, 25563}, {631, 9545}, {1154, 10257}, {1192, 31283}, {1204, 60780}, {1495, 16532}, {1503, 16531}, {1511, 62302}, {1620, 52843}, {2071, 38728}, {2072, 34128}, {2777, 46031}, {3292, 14869}, {3520, 15807}, {3523, 18952}, {3581, 65085}, {3631, 50983}, {3853, 44872}, {5054, 15066}, {5449, 43615}, {5609, 59648}, {5663, 44452}, {5946, 37118}, {6000, 44234}, {6696, 32137}, {7575, 38729}, {8254, 15012}, {10018, 13491}, {10096, 14915}, {10113, 44246}, {10125, 40647}, {10151, 34584}, {10212, 43575}, {10255, 34798}, {10264, 51393}, {10303, 63720}, {10627, 16196}, {11264, 12038}, {11438, 61736}, {11563, 61691}, {11704, 18565}, {12006, 37649}, {12106, 23329}, {12108, 20585}, {13358, 45780}, {13363, 52262}, {13364, 44236}, {13391, 15122}, {13406, 43604}, {13470, 15331}, {13561, 18474}, {14157, 15057}, {15055, 31726}, {15059, 18403}, {15088, 23323}, {15311, 68319}, {15720, 41724}, {16111, 44283}, {16238, 45959}, {17702, 37968}, {17704, 34004}, {18282, 46850}, {18388, 34331}, {18400, 18571}, {20396, 47335}, {22467, 34826}, {23328, 46030}, {25739, 37955}, {26879, 43394}, {32110, 37938}, {32140, 58378}, {32171, 45732}, {32767, 45971}, {34152, 38727}, {34797, 45622}, {35489, 58789}, {35491, 43865}, {37943, 51548}, {38793, 40111}, {43584, 48411}, {43608, 45735}, {44235, 64027}, {44282, 51403}, {44911, 61574}, {46451, 64624}, {47486, 64757}, {49116, 51733}, {50143, 64180}
X(68429) = midpoint of X(i) and X(j) for these {i,j}: {3, 63839}, {5, 21663}, {125, 15646}, {403, 12041}, {6699, 44673}, {10113, 44246}, {10264, 51393}, {16111, 44283}, {32110, 37938}, {34152, 63735}, {44234, 61548}, {49116, 51733}
X(68429) = reflection of X(i) in X(j) for these {i,j}: {3853, 44872}, {23323, 15088}, {61574, 44911}
X(68429) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {140, 13630, 58407}, {140, 44158, 11591}, {1204, 60780, 67869}, {6696, 44232, 32137}, {32171, 67902, 45732}, {38727, 63735, 34152}